Chinese Professional SV-8800 Silicone Sealant for Insulating Glass for Anguilla Importers

Chinese Professional SV-8800 Silicone Sealant for Insulating Glass for Anguilla Importers
  • Chinese Professional SV-8800 Silicone Sealant for Insulating Glass for Anguilla ImportersChinese Professional SV-8800 Silicone Sealant for Insulating Glass for Anguilla Importers
  • Chinese Professional SV-8800 Silicone Sealant for Insulating Glass for Anguilla ImportersChinese Professional SV-8800 Silicone Sealant for Insulating Glass for Anguilla Importers
  • Chinese Professional SV-8800 Silicone Sealant for Insulating Glass for Anguilla ImportersChinese Professional SV-8800 Silicone Sealant for Insulating Glass for Anguilla Importers

Short Description:

Description SV-8800 is two components, high modulus; neutral curing silicone sealant specifically developed for assembly of high performance insulated glass units as secondary sealing material.   Where to use It is a two-component silicone that offers variable work life with high bonding strength to maintain the integrity of insulating glass unit, suits both commercial and residential IGU.   Key Features 1. High Modulus 2. UV resistance 3. Low vapor and gas transmission 4. Primerless adhesion...


Product Detail

Attentions

Application

Product Tags

We have the most advanced production equipment, experienced and qualified engineers and workers, recognized quality control systems and a friendly professional sales team pre/after-sales support for Chinese Professional SV-8800 Silicone Sealant for Insulating Glass for Anguilla Importers, We look forward to supplying you with our products in the near future, and you will find our quotation is very reasonable and the quality of our products is very excellent!


Description

SV-8800 is two components, high modulus; neutral curing silicone sealant specifically developed for assembly of high performance insulated glass units as secondary sealing material.

 

Where to use

It is a two-component silicone that offers variable work life with high bonding strength to maintain the integrity of insulating glass unit, suits both commercial and residential IGU.

 

Key Features

1. High Modulus

2. UV resistance

3. Low vapor and gas transmission

4. Primerless adhesion to coated glass

5. 100% compatible to SV-8890

 

Technical data sheet

Test standard Test project Unit value
Before curing——25℃,50%R.H.
GB13477 Specific gravity(After mixing)   1.33
GB13477 Operating time min 20-40
GB13477 surface drying time(25℃,50%R.H.) min 80-188
corrosivity     No
7 days after curing——25℃,50%R.H.
GB/T 531 Durometer Hardness Shore A 40
GB13477 The tensile modulus at 12.5% elongation Mpa 0.18
  The ultimate tensile strength Mpa 0.92
GB13477 Elongation limit (fracture) % 150

 

Certification

GB-24266-2009;

 

Color

Component A(Base) – White, Component B(Catalyst)- Black

 

Package

1. Component A(Base): (190L), Component B(Catalyst) (18.5L)

2. Component A(Base):24.5kg (18L), Component B(Catalyst): 1.9kg (1.8L)

 

Shelf life

12 months

 

Note

If you want the TDS or MSDS or other details, please contact with our sales person.

  • Previous:
  • Next:



  • Behold The Future…Hydrogel superglue is 90 percent water, New “water adhesive” is tougher than natural adhesives employed by mussels and barnacles.

    Nature has developed innovative ways to solve a sticky challenge: Mussels and barnacles stubbornly glue themselves to cliff faces, ship hulls, and even the skin of whales. Likewise, tendons and cartilage stick to bone with incredible robustness, giving animals flexibility and agility.

    The natural adhesive in all these cases is hydrogel — a sticky mix of water and gummy material that creates a tough and durable bond.

    Now engineers at MIT have developed a method to make synthetic, sticky hydrogel that is more than 90 percent water. The hydrogel, which is a transparent, rubber-like material, can adhere to surfaces such as glass, silicon, ceramics, aluminum, and titanium with a toughness comparable to the bond between tendon and cartilage on bone.

    In experiments to demonstrate its robustness, the researchers applied a small square of their hydrogel between two plates of glass, from which they then suspended a 55-pound weight. They also glued the hydrogel to a silicon wafer, which they then smashed with a hammer. While the silicon shattered, its pieces remained stuck in place.

    Such durability makes the hydrogel an ideal candidate for protective coatings on underwater surfaces such as boats and submarines. As the hydrogel is biocompatible, it may also be suitable for a range of health-related applications, such as biomedical coatings for catheters and sensors implanted in the body.

    “You can imagine new applications with this very robust, adhesive, yet soft material,” says Xuanhe Zhao, the Robert N. Noyce Career Development Associate Professor in MIT’s Department of Mechanical Engineering. For example, Zhao’s group is currently exploring uses for the hydrogel in soft robotics, where the material may serve as synthetic tendon and cartilage, or in flexible joints.

    “It’s a pretty tough and adhesive gel that’s mostly water,” Hyunwoo Yuk, a graduate student in mechanical engineering and the lead author of a paper on the work, says. “Basically, it’s tough, bonding water.”

    Zhao and his students publish their results today in the journal Nature Materials.

    A stretchy anchor…
    A tough, flexible hydrogel that bonds strongly requires two characteristics, Zhao found: energy dissipation and chemical anchorage. A hydrogel that dissipates energy is essentially able to stretch significantly without retaining all the energy used to stretch it. A chemically anchored hydrogel adheres to a surface by covalently bonding its polymer network to that surface.

    “Chemical anchorage plus bulk dissipation leads to tough bonding,” Zhao says. “Tendons and cartilage harness these, so we’re really learning this principle from nature.”

    In developing the hydrogel, Yuk mixed a solution of water with a dissipative ingredient to create a stretchy, rubbery material. He then placed the hydrogel atop various surfaces, such as aluminum, ceramic, glass, and titanium, each modified with functional silanes — molecules that created chemical links between each surface and its hydrogel.

    The researchers then tested the hydrogel’s bond using a standard peeling test, in which they measured the force required to peel the hydrogel from a surface. On average, they found the hydrogel’s bond was as tough as 1,000 joules per square meter — about the same level as tendon and cartilage on bone.

    Zhao group compared these results with existing hydrogels, as well as elastomers, tissue adhesives, and nanoparticle gels, and found that the new hydrogel adhesive has both higher water content and a much stronger bonding ability.

    “We basically broke a world record in bonding toughness of hydrogels, and it was inspired by nature,” Yuk says.

    https://news.mit.edu/2015/hydrogel-superglue-water-adhesive-1109

    ———————————————————————————————————–

    Newly engineered water superglue (MIT Video)



    a quick video (review) on a good product, Atsko Silicone Water-guard

    Related Products

    WhatsApp Online Chat !