10 Years Manufacturer CV-709 silicone sealant for PV moudels to Bolivia Factory

10 Years Manufacturer
 CV-709 silicone sealant for PV moudels to Bolivia Factory
  • 10 Years Manufacturer
 CV-709 silicone sealant for PV moudels to Bolivia Factory10 Years Manufacturer
 CV-709 silicone sealant for PV moudels to Bolivia Factory
  • 10 Years Manufacturer
 CV-709 silicone sealant for PV moudels to Bolivia Factory10 Years Manufacturer
 CV-709 silicone sealant for PV moudels to Bolivia Factory
  • 10 Years Manufacturer
 CV-709 silicone sealant for PV moudels to Bolivia Factory10 Years Manufacturer
 CV-709 silicone sealant for PV moudels to Bolivia Factory

Short Description:

Description CV709 is a high-performance silicone sealant, one-component oxime type room temperature curing silicone rubber, has excellent weather resistance, high thixotropy, after curing for solar components involved in the base material has good caking property, by TUV for environmental requirements of the ROHS, UL E339949   Key Features 1. 100% silicone 2. No sag 3. high thixotropy 4. Water & weatherproof 5. For solar components involved in the base material has good bonding   Basic Ap...


Product Detail

Attentions

Application

Product Tags

Our commission is to serve our users and clients with best quality and competitive portable digital products for 10 Years Manufacturer CV-709 silicone sealant for PV moudels to Bolivia Factory, We are confident that there will be a promising future and we hope we can have long term cooperation with customers from all over the world.


Description

CV709 is a high-performance silicone sealant, one-component oxime type room temperature curing silicone rubber, has excellent weather resistance, high thixotropy, after curing for solar components involved in the base material has good caking property, by TUV for environmental requirements of the ROHS, UL E339949

 

Key Features

1. 100% silicone

2. No sag

3. high thixotropy

4. Water & weatherproof

5. For solar components involved in the base material has good bonding

 

Basic Application

1.Solar module frame seal

2.The adhesive of the solar energy back to the terminal block

3.General industrial assembly with seal

 

Technical data sheet

Test standard Test project Unit value
Before curing——25℃,50%R.H.
  specific gravity g/ml 1.34-1.40
GB13477 Operating time min 15
GB13477 surface drying time(25℃,50%R.H.) min 40-60
3 days after curing——25℃,50%R.H.
  Temperature range -55~200
GB13477 Durometer Hardness Shore A 40~55
  The ultimate tensile strength Mpa ≥2
GB13477 Breaking elongation % 300-600
  Aluminum bonding shear strength Mpa ≥1.5
Electrical properties
  Breakdown voltage Kv/mm ≥20
  Volume resistance ohm.cm 9E+14
  Dielectric constant   3.1@50Hz

 

Certification

UL E339949; TUV

 

Color

Black, White

 

Package

300ml in cartridge * 24 per box, 500ml in sausage *20 per box

 

Shelf life

12 months

 

Note

If you want the TDS or MSDS or other details, please contact with our sales person.

  • Previous:
  • Next:



  • We are a leading manufacturer of RTV-2 liquid silicone rubber in China, we specialize in this field for over 15 years. Our products include Molding silicone, Manual mold making silicone, Pad printing silicone, HTV silicone, life casting silicone, addition cured silicone and so on…
    price in between: 5.89-13.98 $/kg



    What is SILICONE RUBBER? What does SILICONE RUBBER mean? SILICONE RUBBER meaning – SILICONE RUBBER definition – SILICONE RUBBER explanation.

    Source: Wikipedia.org article, adapted under https://creativecommons.org/licenses/by-sa/3.0/ license.

    Silicone rubber is an elastomer (rubber-like material) composed of silicone—itself a polymer—containing silicon together with carbon, hydrogen, and oxygen. Silicone rubbers are widely used in industry, and there are multiple formulations. Silicone rubbers are often one- or two-part polymers, and may contain fillers to improve properties or reduce cost. Silicone rubber is generally non-reactive, stable, and resistant to extreme environments and temperatures from -55 °C to +300 °C while still maintaining its useful properties. Due to these properties and its ease of manufacturing and shaping, silicone rubber can be found in a wide variety of products, including: automotive applications; cooking, baking, and food storage products; apparel such as undergarments, sportswear, and footwear; electronics; medical devices and implants; and in home repair and hardware with products such as silicone sealants.

    In its uncured state, silicone rubber is a highly-adhesive gel or liquid. In order to convert to a solid, it must be cured, vulcanized, or catalyzed. This is normally carried out in a two-stage process at the point of manufacture into the desired shape, and then in a prolonged post-cure process. It can also be injection molded.

    Silicone rubber may be cured by a platinum-catalyzed cure system, a condensation cure system, a peroxide cure system, or an oxime cure system. For platinum catalyzed cure system, the curing process can be accelerated by adding heat or pressure.

    In a platinum-based silicone cure system, also called an addition system (because the key reaction building polymer is an “Addition reaction”). With platinum as catalyst, two different chemical groups react, a silicone hydride and a vinyl. In this reaction, an ethyl group is formed and there are no byproducts. Two separate components must be mixed to catalyze the polymers: the one component contains a platinum complex which must be mixed with the second, a hydride- and a vinyl-functional siloxane polymer, creating an ethyl bridge between the two. Such silicone rubbers cure quickly, though the rate of or even ability to cure is easily inhibited in the presence of elemental tin, sulphur, and many amine compounds.

    Condensation curing systems can be one-part or two-part systems. In one-part or RTV (room-temperature vulcanizing) system, a cross-linker exposed to ambient humidity (i.e., water) experiences a hydrolysis step and is left with a hydroxyl or silanol group. The silanol condenses further with another hydrolyzable group on the polymer or cross-linker and continues until the system is fully cured. Such a system will cure on its own at room temperature and (unlike the platinum-based addition cure system) is not easily inhibited by contact with other chemicals, though the process may be affected by contact with some plastics or metals and may not take place at all if placed in contact with already-cured silicone compounds. The crosslinkers used in condensation cure systems are typically alkoxy, acetoxy or oxime silanes such as methyl trimethoxy silane for alkoxy-curing systems and methyl triacetoxysilane for acetoxy-curing systems. In many cases an additional condensation catalyst is added to fully cure the RTV system and achieve a tack-free surface. Organotitanate catalysts such as tetraalkoxy titanates or chelated titanates are used in alkoxy-cured systems. Tin catalysts such as dibutyl tin dilaurate (DBTDL) can be used in oxime and acetoxy-cured systems….

    Related Products

    WhatsApp Online Chat !